Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 <EC> <29/07/2022>

CONTINUOUS INTERNAL EVALUATION - 2

Dept: ECE	Sem / Div: IV	Sub: Signals and Systems	S Code:18EC45
Date:05/08/22	Time:9:30-11:00am	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

Qì	N	Questions	Marks	RBT	CO's		
	PART A						
1 8		Show that the step response of an LTI system is running integral of impulse response and also prove distributive property of convolution integral.		L2	CO2		
	- 1	Determine whether the following systems represented by impulse responses are stable and causal: (i) $h[n] = u[n-1] - u[n-5]$ (ii) $h[n] = 0.5^{ n }$ (iii) $h(t) = e^{-t}u(-t)$ iv) $h(t) = u(t-1)$	8	L3	CO2		
		What is Region of Convergence (ROC) of Z-Transform? Mention its properties with examples.	8	L2	CO4		
		OR					
2		State and prove distributive and associative property of convolution sum.	9	L2	CO2		
		Evaluate the step response for the LTI system represented by the following impulse responses. i) $h(t)=e^{- t }$ ii) $h[n]=(\frac{1}{2})^n u[n-2]$	8	L3	CO2		
	c	Find the z-transform by using appropriate properties. i) $x[n]=nsin(\frac{\pi}{2}n)u[-n]$	8	L3	CO4		

-	_				_
		ii) $x[n] = (n-2)(\frac{1}{4})^n u[n-2]$			
		PART B			
3 a	1	Find the time domain signal corresponding the following Z-transform, (0.25z ⁻¹)	9	L3	CO4
		$X(z) = \frac{(0.25z^{-1})}{((1-0.5z^{-1})(1-0.25z^{-1}))}$ with the POCs			
	- 1	with the ROCs i)0.25 < $ z $ < 0.5 ii) $ z $ < 0.25 iii) $ z $ > 0.5			
b	- 1	State and prove the following properties of Z-transform: (i) Time-reversal (ii) Convolution	8	L2	CO4
	- 1	Using power series expansion method determine the inverse z-transform of	8	L2	CO4
		I) $X(z)=e^{z^{1}}$ ii) $X(z)=\frac{1}{1+\frac{1}{2}z^{-1}}$ ROC $ z > 0.5$			
		OR			
4 3		A discrete LTI system is characterized by following Difference equation: y[n] = y[n-1] +y[n-2] +x[n-1] i) Find the system function.	9	L3	CO4
		ii) Indicate ROC if system is stable. iii)Indicate ROC if system is causal. iv)Obtain impulse response in both cases.			
	b	The z-transform of a sequence is given by,	8	L3	CO4
		$X(z) = \frac{(z(z^2 - 4z + 5))}{((z-1)(z-2)(z-3))}$ find x(n) for the following ROCs, i)2< z < 3 ii) z > 3			
	С	Find the Z-transform and sketch the ROC, poles and zeroes in the Z-plane. $x[n] = 0.5^{n}u[n] + 2^{n}u[-n-1]$	8	L2	CO4

Page: 2/3