Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 <ME> <27-07-2022>

CONTINUOUS INTERNAL EVALUATION - 2

Dept: ME	Sem / Div: 4 th	Sub: Fluid Mechanics	S Code: 18ME43
Date: 05/08/2022	Time: 9:30-11:00 am	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

Q	N	Questions	Marks	RBT	CO's
		PART A			
1		The stream function for a two-dimensional flow is given by $\Psi = 8.xy$, calculate the velocity at the point $p(4, 5)$. Find the velocity potential function Φ		L2	CO2
	- 1	Derive an expression for the meta-centric height of a floating body	7	L3	CO2
	С	What is similitude?. Explain Geometric and Dynamic similarity?	8	L3	CO4
		OR			
2	a	In a two-dimensional incompressible flow, the fluid velocity components are given by,			
		u = x-4y and v = -y-4x	9	L3	CO2
		Show that velocity potential exists and determine its form. Find also the stream function.			
	b	A solid cylinder of diameter 4.0 m has a height of 3 metres . Find the meta-centric height of the cylinder when it is floating in water with its axis vertical. The sp. gr. of the cylinder = 0.6 metres		L3	CO2
	С	Frictional torque T of a disc of diameter D depends on speed N , in a fluid dynamics viscosity μ and density of fluid ρ in a turbulent fluid flow. By using Bucking-	9	L2	CO4

Page: 1 / 2

h	am's Π theorem obtain an expression for T .			
	PART B			
1 1 -	Jsing Buckingham's Pi-theorem, show that the velocity brough a circular orifice is given by	13	L2	CO4
	$V = \sqrt{2gH} \phi \left[\frac{D}{H}, \frac{\mu}{\rho VH} \right]$			
tl	where "H" is the head causing flow, D is the diameter of the orifice, μ is coefficient of viscosity, ρ is the mass lensity and g is the acceleration due to gravity.			
1 1	Define the terms Dimensional analysis and Model analysis.	4	L3	CO4
I	A block of wood (specific gravity=0.7) floats in water. Determine the meta-centric height if it's size is 1m ×1m × 0.8m.	7	L3	CO2
	OR			
1 1 1	The pressure difference Δp in a pipe of diameter D and Length L due to turbulent flow depends on the velocity	9	L2	CO4
	V, viscosity μ , density ρ and roughness k. Using Bucking-ham's Π theorem obtain an expression for Δp			
b	Explain Dimensional Homogeneity with examples	8	L2	CO4
c .	The velocity potential function is given by $\Phi = 5 (x^2 - y^2).$	8	L3	CO2
(Calculate the velocity components at the point (4, 5).			

Obl 2-11/22

Prepared by: Satheesha Kumar K

HOD

Page: 2/2