Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	<py></py>	<20/06/2021>		

CONTINUOUS INTERNAL EVALUATION- 1

Dept:FY (Chemistry)Sem / Div: II/A,B, CSub:Engineering ChemistryS Code:18CHE22Date:24/06/2021Time: 3:00-4:30 pmMax Marks: 50Elective:NNote: Answer any 2 full questions, choosing one full question from each part.

Q N	Questions	Marks	RBT	COs	
PART A					
	(a) Explain the construction and working of Li-ion battery with applications(b) Explain the classification of batteries with examples	10	L1,L2	CO1	
b	b Write the construction and working of calomel electrode and also obtain an expression for the potential of calomel electrode.		L1,L2	CO1	
	An electrochemical cell consists of zinc electrode dipped in $0.5M$ ZnSO ₄ and nickel electrode in 0.05 M NiSO ₄ . Write the cell	7	L1,L3	CO1	
	representation, cell reaction and calculate the emf of the cell at 298K. (The standard reduction potentials of zinc and nickel are -0.76V and -0.25V respectively).				
	OR				
2 a	Define ion selective electrode. Write the construction and working of glass electrode, derive an expression for emf of glass electrode and explain the procedure for the determination of pH of a solution using glass electrode.	10	L1,L2	CO1	
b	Define single electrode potential. Derive Nernst Equation	8	L1,L2	CO1	
	Define concentration cells. A concentration cell was constructed by immersing 2 silver electrodes in 0.05M and x M AgNO ₃ solution (x $>$ 0.05 M). Write the cell representation, cell reactions and calculate x if the emf of the cell is 0.0768V.	7	L1,L3	CO1	
	PART B				
	Define corrosion. Explain the electrochemical theory of corrosion taking iron as an example with relevant reactions and block diagram.	10	L1,L2	CO2	
	b Define inorganic coating. Explain the corrosion control of Anodizing Aluminium with relevant reactions.		L1,L2	CO2	
c	Explain the effect of following factors on rate of corrosion (a) Ratio of anodic area and cathodic area (b) pH	7	L2	CO2	
OR					
	What is Cathodic protection of metals? Explain sacrificial anode and impressed current method of protecting metals. List the advantages and disadvantages.	10	L1,L2	CO2	
	b Explain Differential aeration corrosion taking the example of water line and pitting corrosion.		L1	CO2	
c	Define metallic coating. Explain the same by taking the example of Galvanization.	7	L1,L2	CO2	