		[A L	Unit of Vivekananda	Engineering & Techr Vidyavardhaka Sangha vi & Approved by AICT	Puttu	r ®]		
		CRM08	Rev 1.10 Basic Science		.03/03/21			
		CO	NTINUOUS INT	ERNAL EVALUAT	ION	- 2		
Dept: Basic Science			Sem/Div: I sem A,B,C	Sub: Engineering Mechanics	S Co	S Code: 18CIV14		
Date:06-03-21		e:06-03-21	Time: 9.30-11.00	Max Marks: 50	Elective: N			
N	ot	e: Answer ar	ny 2 full questions,	choosing one full que	stion f	from ea	ich p	art.
~	T		Quastic			Marks	RBT	CO
Q	N		Questic	PART A		IVIAI KS	1	CU:
1	-	Decree that at	· · · · · · · · · · · · · · · · · · ·	ual to angle of friction	1 1-	5	L2	CO
1	b	In the fig1b,	10	+	CO			
-		parts of the s		ne the tension in dif			and the second second	
		at an angle o weighing 75	of 60° to the horizon ON climbs the ladd	ON is resting against tal ground as in fig1c ler. At what position he induce slipping?	along		L3	CO
				OR				
2	a	State & prov	e Lami's theorem		~	5	L2	CO
	Source and the	Find the rea supporting t shown in fig	10	L3	CO.			
	and the second second	make the n	I be the value of an notion of 900N be the $\mu = \frac{1}{3}$ for all cont	ngle θ in fig 2c whic block down the pla tact surfaces.	h will ine to	10	L3	CO:
	and a second			PART B				
3	a	List the assu	mptions made in the	e analysis of trusses	\checkmark	5	L2	CO
	-			e beam shown in fig3		10	TO	CO.

Page: 1 / 3

*

c Find the forces in members of truss shown in fig3c using method of joints and tabulate member forces.	g 10	L3	CO3
OR			
4 a Mention the types of supports & mark their reaction lines.	5	L2	CO3
b Find the length 'x' so that the reactions at both the supports are equal for the beam as shown in fig4b.	10	L3	CO3
c Analyze the frame in fig4c and tabulate the member forces	10	L3	CO3
$\begin{array}{cccc} A & Fig 1b \\ \hline TI & Fig 1b \\ \hline 120^{\circ} & 135^{\circ} \\ \hline B & T2 \\ \hline WI & W2 \end{array} \xrightarrow{T3} \hline T4 \\ \hline E \\ \hline WI & W2 \end{array}$	60°	B	
A B B Fig 26 Fig 26 A B Fig 26 A B C C C C C C C C C C C C C C C C C C	Fig	2C	
$\frac{Fig 36}{20 \text{ kw/m}} = 10 \text{ kw} = 10 \text{ kw/m}$ $A = \frac{130^{\circ} \text{ 5m}}{10 \text{ kw/m}} = \frac{130^{\circ} \text{ 5m}}{10 \text{ kw/m}}$ $B = C = 0 Decosition of the second se$	60	2:5m	30 C 70
	BKN	Fiz	4C B
Prepared by: Mr. Shivarama MSGVN HOD: Prof. Rama	nanda	Kan	ath 121