Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]					
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	<fу></fу>	25/08/21		

CONTINUOUS INTERNAL EVALUATION- 2

Dept:Civil	Sem / Div: 2 D, E, F	Sub:Elements of civil	S Code:18CIV24			
		Engineering and Mechanics				
Date:01/09/2021 Time: 9:30-11:00 am Max Marks: 50 Elective:N						
Note: Answer any 2 full questions, choosing one full question from each part.						

	Q	Questions		RBT	COs	
	N					
			т 1	002		
ŀ	1	List the assumptions in the analysis of trusses.	5		<u>CO3</u>	
L	b	What are the different types of supports and mark their reaction lines.	10		<u>CO3</u>	
l	c	Analyze the frame using method of joint and tabulate the member	13	L3	CO3	
l		forces for the frame shown in figure.				
		A 30° 60° 30° c 5.0m B 2.5m mm				
ŀ		OR				
2	2 a	List the steps followed in the analysis of truss by method of Joints	5	L1	CO3	
	b What are the different types of beams? How do you differentiate them?		7	L1,2	CO3	
	c	Find the length 'X' so that the reactions at both the supports are equal for the beam as shown in figure.	13	L3	CO3	
		75N SHIM SON				
l						
l		*mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm				
l		1 5 - 1 2m-1				
l						
l						
	PART B					
	3 a	A uniform ladder 4m long weighs 200N. It is placed against a wall	10	L3	CO3	
l		making an angle of 60 with floor as shown in the figure. The				
		coefficient of the friction between the wall and ladder is 0.25 & that				
		between the floor and ladder is 0.35. The ladder in addition to its own				
		weight, has to support a man of 1000N at its top at B. calculate				
		i) The horizontal force P to be applied to ladder at the floor level to				
		prevent slipping				
I		ii) If the force P is not applied, what should be the minimum				

_

Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidvavardhaka Sanaha Puttur ®]					
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	<fу></fу>	25/08/21		
	·				

CONTINUOUS INTERNAL EVALUATION- 2

	inclination of ladder with horizontal, so that there is no slipping of it			
	with man at top?			
	B B			
	200 N 2m/			
	60°			
1	A^{main}	10	13	CO3
	m=0.25. Determine the horizontal force to be applied for	10	L3	005
	i) Impending motion down the plane			
	ii) Impending motion up the plane			
	1			
	P			
	30.			
	7			
(State laws of static friction.	5	L1	CO3
	OR			
4	A ladder 5m long rests on a horizontal ground and leans against a smooth wall at an angle of 70° with horizontal. The weight of ladder is	10	L3	CO3
	900N and a man weighing 750N stands on a ladder 1.5m from the			
	bottom of ladder. Calculate coefficient of friction between ladder and			
	floor.			
	1/1			
	750 N 3.5m			
	1.5m			
	$A^{70^{\circ}}$			
ł	A block weighing 3kN overlying a 10° wedge on horizontal floor and	10	L3	CO3

Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]					
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	<fу></fу>	25/08/21		

CONTINUOUS INTERNAL EVALUATION- 2

leaning against a vertical wall is to be raised by applying a horizontal force to the wedge. Angle of friction between wall and block as 15 ^o and for other surfaces of contact as 18 ^o . Determine minimum horizantal force to be applied to rise the block shown in figure.			
c Prove that angle of repose is equal to angle of friction.		L2	CO3