Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10

<Civil> <30-03-2021>

CONTINUOUS INTERNAL EVALUATION- 3

Dept: Civil Engg		Sub: Elements of Civil Engg & Engg. Mechanics	S Code: 18CIV14	
Date:09-04-2021	Time: 9:30-11:00 am	Max Marks: 50	Elective: N	

QN	Ouestions	Marks	RBT	COs	
Q1	PART A	- 200			
1	Derive the expression for centroid of a semicircle.	10	L1	CO4	
	b Determine centroid of the figure shown 1	15	L3	CO4	
	OR				
2	a State and prove parallel axis theorem.	10	L1	CO4	
	b Find the polar moment of inertia of the plane lamina about point O	15	L3	CO4	
	PART B				
3	a What is centrifugal force? What is super elevation?	8	L2	CO5	
	b A stone is dropped from the top of the tower 50m high. At the same time another stone is thrown up from the tower with a velocity of 25m/sec. At what distance from the top and after how much time the two stones cross each other?	9	L3	CO5	
	The motion of a particle is given by the equation $x = t^3 - 3t^2 - 9t + 12$. Determine the time, distance travelled and acceleration of particle when velocity becomes zero.	8	L2	CO5	
	OR				
4	a What is projectile? Define the following terms briefly) Angle of projection ii) Horizontal range iii) Vertical height iv) Time of fight	8	L2	CO5	
	b A burglar's car starts at an acceleration of 2m/s². A police vigilant party came after 5s and continued to chase the burglar's car with a uniform velocity of 20m/s. find the time taken in which the police van will overtake the car.	8	L3	CO5	
	c The motion of a particle is described by the following equation $x = 2(t - t)$	9	L3	CO5	
	$(x+1)^2$, $y=2(t+1)^{-2}$. Show that path travelled by the particle is rectangular hyperbola. Also find the velocity and acceleration of particle at $t=0$				

