CBCS SCHEME

USN

18ELN14/24

First/Second Semester B.E. Degree Examination, Aug./Sept.2020 **Basic Electronics**

Time: 3 hrs.

Max, Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain the operation of PN junction diode under forward and reverse bias condition.
 - (08 Marks) b. Explain how zener diode can be used as voltage regulator.
 - A silicon diode has I_S = 10nA, operating at 25°C. Calculate diode current I_D for a forward bias of 0.6V. (06 Marks)

OR

- With neat circuit diagram, explain the operation of center tapped full wave rectifier. Draw input and output waveforms. (08 Marks)
 - Explain photo diode and LED in brief. (06 Marks) (06 Marks)
 - c. Explain LM7805 fixed voltage regulator.

Module-2

- a. Explain construction and operation of n-channel JFET. Draw transfer and drain characteristic. (08 Marks)
 - b. Explain the operation of CMOS inverter (06 Marks)
 - c. A n-channel JFET has $I_{Dss} = 8mA$, $V_p = 4V$. Determine I_D for $V_{GS} = -1V$ and $V_{GS} = -2V$. (06 Marks)

OR

- Explain construction and operation of n channel depletion MOSFET. (08 Marks)
 - Explain the operation of SCR using 2 Transistor model. (06 Marks)
 - c. Explain natural and forced commutation turn off methods of SCR. (06 Marks)

Module-3

- 5 a. Define following terms with respect to OP -Amp: i) CMRR ii) Input offset voltage iii) Slew rate. Also mention op-amp ideal characteristics. (08 Marks)
 - b. A certain op-amp has an open loop differentials voltage gain of 1,00,000 and CMRR = 4,00,000. Determine common mode gain and express CMRR in decibels.
 - c. Explain op-amp as integrator.

(06 Marks) (06 Marks)

OR

- With neat circuit, explain the operation of three input adder circuit. Derive expression for (08 Marks)
 - A non inverting amplifier has closed loop gain of 25. If input voltage $V_i = 10 \text{mv}$, $R_f = 10 \text{K}\Omega$ determine the value of R₁ and output voltage V₀. (06 Marks)
 - Explain difference amplifier using op-amp.

(06 Marks)

1 of 2

www.vturesource.com

18ELN14/24

Module-4

With neat circuit, explain transistor as an amplifier. Derive expression for voltage gain.

(08 Marks)

- b. Mention types of feedback amplifier. With block diagram, explain voltage series feedback (06 Marks) amplifier.
- A negative feedback amplifier has gain A = 1000 and bandwidth of 200KHz. Calculate gain and bandwidth with feedback if feedback factor $\beta = 20\%$. (06 Marks)

OR

- a. What is phase shift oscillator? Explain with circuit, RC phase shift oscillator. (08 Marks)
 - b. Explain with circuit, Astable multivibrator using IC 555.
- (06 Marks)
- c. An Astable multivibrator circuit has $R_1 = 6.8K\Omega$, $R_2 = 4.7K\Omega$, $C = 0.1\mu F$. Calculate frequency of oscillation and duty cycle. (06 Marks)

Module-5

- a. Convert:
 - i) $(2467.125)_{10} = (?)_2 = (?)_{16}$
 - ii) $(765.16)_8 = (?)_{10} = (?)_2$
 - iii) $(1011111.101)_2 = (?)_8 = (?)_{10}$.

(08 Marks)

- b. Explain full adder using truth table and expression. Implement sum and carry expressions.
 - (06 Marks)

(06 Marks)

c. Implement half adder using NAND gates

- 10 a. State and prove De-Morgan's theorems for two variables. (08 Marks)
 - b. With the help of logic diagram and truth table, explain the working of clocked SR Flip (06 Marks)
 - c. Explain the basic block diagram of communication system.

(06 Marks)

2 of 2