Dept: EC Sem/Div: I/ABC Course: Basic Electrical Engineering Course Code: 18ELE13

Date: 02/02/2021 Time: 9:30-11:00 Max Marks: 50 Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

Q Questions ·	Marks	RBT	COs
PART A			
a State and explain Kirchhoff's laws as applied to an electric circuit.	6	L1	CO1
b Explain the generation of single phase AC induced emf with suitable diagram	. 7	L2	COI
c Two conductors connected in parallel across 100V dc supply, take 102 current from the supply. Power dissipated in one conductor is 600W. What is the resistance of each conductor?	4 6	L3	COI
d The equation of an alternating current is given as i=62.35 sin(323t) Amps Determine its maximum value, frequency, rms value, average value and form factor.		L3	CO1
OR			
a Derive the equation for root-mean-square value of an alternating current iterms of maximum value.	n 6	L2	
b Show that in a pure inductor the current lags behind the voltage by 90°. Als draw the voltage and current waveforms.	6	L2	COI
c The maximum value of a sinusoidal alternating current of frequency 50Hz 25A. Write the equation for instantaneous value of the alternating current Determine its value at 3ms.	is 6 it.	L3	CO1
d Determine I, I ₁ , I ₂ , V _{ab} , and V _{bc} in the network.	7	L	3 CO1
I 18V			
PART B		1	
a Find the equivalent resistance, when three resistances are connected in series and (b) parallel.	(a) 8	I	L2 CO
b Show that the voltage and current in pure resistive circuit are in phase a power consumed in the circuit equal to product of rms voltage and current The circuit is excited by the a.c. source.		1	L2 CO
c For the bridge circuit shown in figure, calculate current in all branches and power supplied by the source.	7		L3 CO
		4	. 1.0

CONTINUOUS INTERNAL EVALUATION	1		
	3	L3	01
dFind the resistance across SM of the network shown in figure.		1	
50057 3			
5002 \$ 10002 \$ 10002			
10002 3 10001			
100002 }			
OR OR		T 1	CC
	8	L1 L2	CC
	8	LZ	-
b Show that a pure capacitance does not consume any power waveforms of voltage, current and power, when alternating voltage is applied			-
	7	L3	C
c Find the currents in various branches of the given network shown in right			
0.01× 100A			
80A C. A 302 780A			1
200 OF BJO			
3 = 1 = 90A			1
150A			
d Reduce the network, given in figure to a single resistance between terminals	3	L	3
dReduce the network, given in figure to a single resistance			4
A and B.			
A			
362 5102			
>1000	188		
32 362 3122			
8 - m		100	