Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 EC 24-08-2021

CONTINUOUS INTERNAL EVALUATION- 2

Dept: EC Sem / Div: D E F Course: Basic Electrical Engineering Course Code: 18ELE23
Date:31-08-2021 Time: 3:00-4:30 PM Max Marks: 50 Elective: N
Note: Answer any 2 full questions, choosing one full question from each part.

	Q	Questions	Marks	RBT	COs
1	N	PART A			
1	a	Derive the condition for which the efficiency of a transformer is maximum.	7	L2	CO2
H		Derive the EMF equation of synchronous generator.	8	L2	CO3
H	_	For a single phase, 50Hz, 150kVA transformer, the required no-load voltage		L3	CO2
		ratio is 5000V/250V. Find (a) the number of turns in each winding for a	10		
	1	maximum core flux of 0.06Wb, (b) the efficiency at half rated kVA, and			
		UPF, (c) the efficiency at full load, 0.8 pf lagging, and (d) the kVA load for			
		maximum efficiency, if the full load copper losses are 1800W and core			
		losses are 1500W.			
OR					I.
2	a	Describe the constructional features of synchronous generator with suitable	10	L2	CO3
	_	diagram.			
	b	Define slip of an induction motor and derive expression for frequency of	6	L2	CO2
L	+	rotor current.			
		In a 50kVA, 11kVA/400V, single phase transformer, the iron and copper	9	L3	CO2
		losses are 500W and 600W, respectively. Calculate (a) the efficiency at UPF			
		at full load, (b) the load for maximum efficiency, and (c) the iron and copper			
L		losses for this load.			
PART B					
3	1	What are the various loses that occur in a transformer? Give the equations	7	L1	CO2
L	-	for these loses?	_		
L		Explain clearly the working principle of a three phase induction motor.	6	L2	CO2
		A 10 pole induction motor is supplied by a 6 pole alternator which is driven	6	L3	CO2,
		by a prime mover at 1200 rpm. If the motor runs at slip of 3% what is its			CO3
┝	-	speed?		T 0	000
		A 3 phase, 50Hz synchronous generator runs at speed of 166.67 rpm. How	6	L3	CO3
ŀ		many poles does it have? OR			
4		Derive EMF equation of a transformer.	6	L2	CO2
F	_	Explain the concept of rotating magnetic field in case of a 3 phase induction		L2	CO2
		motor.	O	L2	CO2
H	-	A 4-pole, 3 phase, 50Hz, star connected alternator has a single layer winding	8	L3	CO3
		in 36 slots with 30 conductors per slot. The flux per pole is 0.05Wb and the			
		winding is full pitched. Find the synchronous speed and the line voltage.			
	d	6 pole induction motor is fed from 50Hz supply. If the frequency of rotor	5	L3	CO2
		emf at full load is 2Hz, find the full load slip and speed.			