b.

First/Second Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Basic Electronics**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain the working of PN junction diode under forward and reverse biased conditions. 1
 - (06 Marks) Explain the working of Photodiode. (05 Marks)
 - Explain with neat circuit diagram and waveforms, the working of full wave bridge rectifier. Show that the efficiency of full wave bridge rectifier is 81%. (09 Marks)

- 2 Explain the operation of Half wave rectifier with capacitor filter with neat circuit diagram and waveforms. (06 Marks)
 - b. A full wave rectifier uses 2 diodes having internal resistance of 10 Ω each. The transformer RMS secondary voltage from center to each end is 200V. Find I_m, I_{de}, I_{rms} and V_{de} if the load is 800Ω . (06 Marks)
 - c. Explain how zener diode helps in voltage regulation with neat circuit diagram. Give detail mathematical analysis. (08 Marks)

- nd characteristics of n-channel Expl in the construction, working a (09 Marks) With a neat circuit clagram, explain the working of CMCS inverter. (06 Marks)
 - For a n-channel JFET if $I_{DSS} = 9$ mA and $V_p = -6V$. Calculate I_D at $V_{gs} = -4V$ and V_{gs} at $I_D = 3 \text{ mA}.$ (05 Marks)

- Explain the construction, working and characteristics of enhancement type MOSFET. (09 Marks)
 - Explain the working of Silicon Controlled Rectifier [SCR] using two transistor model. (06 Marks)
 - For an EMOSFET, determine the value of I_D if $I_{D(on)} = 4$ mA, $V_{gs(on)} = 6V$, $V_T = 4V$ and $V_{gs} = 8V$. (05 Marks)

Module-3

- What is an OP-AMP? List the characteristics of an ideal OP-AMP. 5 (06 Marks)
 - b. Explain the operation of an OP-AMP as inverting amplifier with neat diagram and waveforms. (06 Marks)
 - Explain how OP-AMP can be used as (i) Integrator (ii) Voltage follower. (08 Marks)

OR

Explain the different input modes of an OP-AMP. 6

- Design an adder circuit using OP-AMP to obtain an output voltage, $V_0 = -[2V_1 + 3V_2 + 5V_3]$. Assume $R_f = 10 \text{ k}\Omega$. (06 Marks)

- c. Explain the following terms with respect to OP-AMP:

 (i) CMRR (ii) Slew rate (iii) Input bias current (iv) Supply Voltage
 - (i) CMRR (ii) Slew rate (iii) Input bias current (iv) Supply Voltage Rejection ratio.
 (08 Marks)

Module-4

- 7 a. With a neat circuit diagram, explain how transistor is used as an amplifier. Derive an equation for A_v . (08 Marks)
 - b. Explain RC phase shift oscillator with circuit diagram and necessary equations. (08 Marks)
 - Explain the voltage series feedback circuit and derive an equation for voltage gain, A_v, with feedback.
 (04 Marks)

OR

- 8 a. With a neat circuit diagram, explain the working of Wein-bridge oscillator. (08 Marks)
 - b. Explain the operation of IC555 as an Astable oscillator with neat circuit diagram and necessary equations. (08 Marks)
 - c. The Transistor in CE configuration is shown in Fig.Q8(c) with RC = 1 k Ω and β_{DC} = 125. Determine
 - (i) V_{CE} at $V_{in} = 0$ V.
 - (ii) $I_{B(min)}$ to saturate the collector current
 - (iii) $R_{B(max)}$ when $V_{in} = 8 \text{ V}$ $V_{CE(sat)}$ can be neglected.

Module-5

- 9 a. Design Full adder circuit and implement it using basic gates. (08 Marks)
 - b. Find (i) $(1101\ 0111\ 0110\ 1010)_2 = (?)_{16}$
 - (ii) $(EB986)_{16} = (?)_2$
 - (iii) $(925.75)_{10} = (?)_8$ (06 Marks)
 - c. Explain the basic elements of communication system with block diagram. (06 Marks)

OR

- 10 a. State and prove De-Morgan's theorem. (06 Marks)
 - b. With a block diagram, explain the working of a 3-bit ripple counter. (06 Marks)
 - c. What is a Flip-flop? Explain the operation of master-slave JK flip-flop. (08 Marks)

* * * * *