CBCS SCHEME

LLE

18ELN14

## First Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Basic Electronics**

Time: 3 lus. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

### Module-1

- Explain the working of PN junction diode under forward and reverse biased conditions. 1
  - Explain how zener diode helps in voltage regulation with neat circuit diagram. (06 Marks)
  - c. Explain with neat circuit diagram and waveforms the working of center-tap full wave rectifier. Show that efficiency of full-wave rectifier is 81%. (08 Marks)

#### OR

- 2 Explain the operation of half-wave rectifier with capacitor filter with neat circuit diagram and waveforms. (06 Marks)
  - Show that the ripple factor of a half-wave rectifier is 1.21 and efficiency is 40.5%.

(06 Marks)

(06 Marks)

Explain VI characteristics of photodiode and its operation.

(04 Marks)

d. For the circuit shown in Fig.Q2(d) find (i) current and voltages in the circuit for  $R_L = 450 \Omega$ .

# RL= 450 SZ (04 Marks) Module-2

- Explain the drain and transfer characteristics of a JFET with neat circuit diagram. (08 Marks)
  - Explain the basic structure and operation of JFET with neat diagrams (08 Marks)
  - For a JFET  $I_{DSS} = 9$  mA and  $V_{GSCoff} = -8$   $V_{tmax}$  determine draw current for  $V_{GS} = -4$ V. (04 Marks)

- Explain the operation of an enhancement MOSFET with neat circuit diagram. (06 Marks)
  - Explain CMOS as an inverter with neat circuit diagram. Give its equivalent circuit and its advantages. (08 Marks) (06 Marks)
  - Explain VI characteristics of SCR.

# Module-3

- Explain the block diagram of an operational amplifier. 5 (06 Marks)
  - Explain the operation of an op-amp as a non-inverting amplifier with near diagram and waveforms. (06 Marks)
  - Define the following terms with respect to op-amp.
    - (i) CMRR
- (n) Slewrate
- (iii) up offset voltage and current
- (iv) up bias current

(08 Marks)

#### OR

Explain op-amp as a subtractor with neat circuit diagram. 6

(08 Marks)

Explain the different up modes of an op-amp.

(06 Marks)

c. For an op-amp circuit shown in Fig.Q6(c), find the output Vo<sub>1</sub> and Vo<sub>2</sub>.



Fig.Q6(c)

Also write the function of each op-amp used.

(06 Marks)

### Module-4

- With neat circuit diagram explain how transistor is used as an voltage amplifier. Derive an 7 equation for A<sub>1</sub>. (08 Marks)
  - Explain the voltage series feedback circuit and derive an equation for voltage gain A, with feedback. (04 Marks)
  - Explain RC phase-shift oscillator with circuit diagram and necessary equations. (08 Marks)

#### OR

- With neat circuit diagram explain how transistor can be used to switch an LED ON/OFF and 8 give the necessary equation. (08 Marks)
  - The transistor in common emitter configuration is shown in Fig.Q8(b) with  $R_c = 10 \text{ k}\Omega$  and  $\beta_{DC} = 200$  determine
    - (i)  $V_{CE}$  at  $V_{in} = 0$ (ii) l<sub>B(min)</sub> to saturate the collector current (iii)  $R_{B(max)}$  when  $V_{in} = 5V$ .  $V_{CE(sat)}$  can be neglected. (04 Marks)



c. Explain the operation of IC-555 as an Astable oscillator with neat circuit diagram and necessary equation. (08 Marks)

#### Module-5

Design Full adder circuit and implement it using basic gates.

(10 Marks)

b. Explain the basic elements of communication system with block diagram.

(06 Marks)

- Find
  - (i)  $(1010111011110101)_2 = (?)_{16}$  (ii)  $(FA876)_{16} = (?)_2$

(04 Marks)

#### OR

State and prove De Morgan's theorems.

(04 Marks)

Explain the working of a 3-bit ripple counter with neat circuit diagram and timing diagrams.

(08 Marks)

c. Explain the working of RS flip flop with truth table and diagram.

(06 Marks)

- d. Subtract the following using 2's complement:
  - (i) 11100 10011

(02 Marks)