Affiliated to VTU, Belagavi & Approved by AICTE New Delhi CRM08 Rev 1.10 <BS> <28/01/2021>

CONTINUOUS INTERNAL EVALUATION - 1

Dept: FY	Sem/Div:I/A,B,C	Sub: Engineering Physics	S Code:18PHY12		
01/02/2021	Time: 3-4:30pm	Max Marks: 50	Elective: N		

Note: Answer any 2 full questions, choosing one full question from each part.

Q	1	N Questions	Marks	RBT	CO's
	_	PART A			
1	2	What are damped oscillations? Give the theory of damped oscillations.	10	L2	CO1
	t	Define shock wave and give an example. With a neat diagram explain the construction and working of Reddy shock tube.	10	L1 &L 2	CO1
	c	A mass of 0.5kg causes an extension of 0.03m in a spring and the system is set for oscillations. Find (i) force constant of the spring (ii) angular frequency (iii) Time period of the resulting oscillation.		L3	CO1
		OR			
2 3		Define simple harmonic motion. Derive the differential equation of motion for it using Hooke's law. Mention the characteristics and examples of simple harmonic motion	10	L1 &L 2	CO1
b	5	Define force constant and mention its physical significance. Derive the expression for force constant for springs in series and parallel combinations.	10	L1 &L 2	
	S	The distance between the two pressure sensors in a shock tube is 150mm. The time taken by a shock wave to travel this distance is 0.3ms. Find the Mach number of the shock wave. Given velocity of sound as 340m/s.		L3	COI

		PART B	1/1	/	8//	A1123
3	a	Explain the terms gradient of a scalar, divergence and curl of a vector with physical significance.	10	1/2		
	b	What is attenuation? Name the three types of attenuation in optical fibre. Obtain the expression for attenuation coefficient.	10	L1 (&L 2	7	1
	C	Determine constant C, such that $\overrightarrow{A} = (x+ay)\hat{a}_x + (y+bz)\hat{a}_y + (x+cz)\hat{a}_z$ is solenoidal.	5	L3	CO ₂	-
4		OR				1
4	a	Define fractional index change. Describe different types of optical fibers with neat diagrams.	10	L1 & L2	CO2	
	ь	Define Numerical aperture. Derive the expression for numerical aperture in an optical fiber and state the condition for propagation.	10	L2	CO2	2
	c	Find the attenuation in an optical fiber of length 500m When a light signal of power 100mW emerges out of the fiber with a power 90mW.	5	L3	CO2	2

Prepared by: Ms. Thejaswini L P

HOD: Prof. Ramananda kamath