	Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
	CRM08	Rev 1.9	<bs></bs>	<19/11/2019>		
CONTINOUS INTERNAL EVALUATION - 2						
	Dept:FY	Sem / Div:I/A,B,C	A,B,C Sub:Engineering S Code:11			

		v	
	Time: 3;00pm to 4:30pm	Max Marks: 50	Elective:N
Note: Answer any	2 full questions, o	choosing one full que	stion from each

Note: Answer any 2 full questions, choosing one full question from each part.

QN		Questions	Mar ks	RBT	CO
		PART A			
1		Give four Maxwell's equation in differential form in vacuum and hence derive the electromagnetic wave equation in terms of electric field using Maxwell's equations.	10	L2	СО
	b	Describe the concept of Divergence. What is its physical significance? Derive Gauss' divergence theorem.	10	L1& L2	СО
	с	A coil of mean radius 8cm and having 100 turns carries current of 10A. Calculate the magnetic field produced at the center of the coil and at a point on the axis at a distance 4cm from the center.	5	L3	CO
		OR			
2	a	With neat diagram explain the different types of optical fibers and mention the merits of optical fiber communication.	10	L2	СО
	b	Explain attenuation mechanism .With the help of block diagram, explain point to point communication using optical fiber.	10	L2	СО
	с	The attenuation in an optical fiber is 3.6dB/km. What	5	L3	CO

		fraction of its initial intensity remains after i)1 km,ii) after 3km?			
		PART B			
3	a	State and explain de Broglie's hypothesis. Derive an expression for de Broglie wavelength of an accelerated electron.	10	L2	CO:
	b	State and explain Heisenberg's Uncertainty principle, show that electrons do not exist inside the nucleus.		L1& L2	CO:
	С	An electron has a speed of 100m/s. The inherent uncertainty in its measurement is 0.005%. Find the corresponding uncertainty in its position.		L3	CO:
		OR		L	L
4	a	Derive an expression for displacement current and write condition for three types of polarization of Electromagnetic waves.		L2	CO
	b	Define angle of acceptance and numerical aperture. Drive an expression for Numerical aperture also arrive the condition for propagation.	10	L1& L2	CO
	C	A particle of mass 0.5MeV/c^2 has kinetic energy 100 eV. Find its de Broglie wavelength, where c is the velocity of light.		L3	CO

Prepared by: Ms. Thejaswini L P

Miller HOD:Dr. Mahesh K K