Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	<bs></bs>	<28/02/2021>		

CONTINUOUS INTERNAL EVALUATION - 2

Dept: FY	Sem/Div:I/A,B,C	Sub: Engineering Physics	S Code:18PHY12
04/03/21	Time: 3-4:30pm	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's		
	PART A					
1 a	Give the four Maxwell's equations in differential form in vacuum and hence derive the EM wave equation in terms of electric field using Maxwell's equations.		L2	CO2		
b	What is displacement current? Obtain the expression for displacement current. Derive Gauss divergence theorem	10	L1 & L2	CO2		
c	Find charge density (p) at (1,1,1) if Electric Flux Density (D) $\mathbf{D}=6x^2\mathbf{a_x}+3xy^2\mathbf{a_y}+xyz^3\mathbf{a_z}$	5	L3	CO2		
OR						
2 a	Explain the terms (a) spontaneous emission, (b) stimulated emission (c) induced absorption (d) active medium and (e) resonance cavity with diagram		L1 & L2			
b	Mention the properties of wavefuntion? Setup 1 dimensional time independent Schrodinger wave equation.		L1 &I 2			
c	A particle of mass 0.5MeV/C ² has kinetic energy 100eV Find its de Broglie wavelength, where C is the velocity of light.		L3	CO3		

		PART B	ana	ffiliate.	3/
3 4	State de Broglie's hypothesis and prove that wavelength of an accelerated electron is $\lambda = \frac{1.226 \text{nm}}{\sqrt{V}}$			Affilli	CRM08
		State and explain Heisenberg Uncertainty principle. Prove that electrons cannot exist inside the Nucleus of an atom.	10	L1 &L 2	1
	c	An electron is trapped in a 1-D potential well of infinite height and of width of 0.1nm. Calculate the energy required to excite it from its ground state to fifth excited state.	5	L3	CO
		OR			
4	. 2	Define the terms Population inversion and meta-stable state. Derive the expressions for energy density of radiation at equilibrium in terms of Einstein's coefficients.		L1 & L2	CO
	t	Mention the three different vibrational modes of CO ₂ molecule. With a neat energy level diagram explain the construction and working of CO ₂ laser.	10	L2	CO3
	-	The average output power of laser source emitting a laser beam of wavelength 632.8nm is 5mW. Find the number of photons emitted per second by the laser source.		L3	CO3

Phone 1/3/21

Prepared by: Dr. Prasad N Bapat

HOD: Prof. Ramanarda Ramath