Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi									
CRM08 Rev 1.9		<bs></bs>	<11/12/2019>						
CONTINOUS INTERNAL EVALUATION - 3									
Dept:FY	Sem / Div:I/A,B,C	Sub:Engineering Physics	S Code:18PHY1						
Date:16/12/2019	Time: 3:00pm to 4:30pm	Max Marks: 50	Elective:N						

Note: Answer any 2 full questions, choosing one full question from each part.

QN		Questions	Mar ks	RBT	C
		PART A	1		
1	a	Mention the three different vibrational modes of CO_2 molecule. With a neat energy level diagram explain the construction and working of CO_2 laser.	10	L2	C
	b	Define population inversion and metastable state and obtain an expression for energy density of radiation in terms of Einstein coefficients.	10	L1& L2	C
	c	An electron is bound in a one dimensional potential well of width $1A^{\circ}$, but infinite wall height. Find its energy values in the ground state and in the first two excited states.	5	L3	CO
		OR			L
2	a	Define eigen function and eigen value. Setup one- dimensional time independent Schrodinger wave equation.	10	L1& L2	СС
	b	With a proper energy level diagram explain the working of semiconductor laser. Explain the working of laser range finder.	10	L2	CC
	с	A pulsed laser emits photons of wavelength 780nm with	5	L3	CC
			Page:	1/3	

	1				
		20mW average power/pulse. Calculate the number of photons contained in each pulse if the pulse duration is 10ns			
		PART B	L	1	1
3	a	Define semiconductor and explain its types. Derive an expression for electrical conductivity in intrinsic semiconductor.	10	L1& L2	СО
	b	What is Hall effect? Obtain the expression for Hall coefficient, and express Hall voltage interms of Hall coefficient.	10	L1& L2	CO
	С	Find the temperature of which there is 1% probability that a state with an energy 0.5eV above the Fermi energy is occupied.	5	L3	CO
		OR		1	L
4	a	What is Fermi energy? Derive an expression for Fermi Energy at zero Kelvin for a metal.	10	L1& L2	CO
	b	Write the assumptions of quantum free electron theory. Explain the temperature dependence of Fermi factor f(E) with neat diagram.	10	L1& L2	CO
	c	The intrinsic charge carrier concentration of germanium is 2.4×10^{19} /m ³ , calculate its resistivity if mobility of electrons and holes respectively are 0.39 m ² /Vs and 0.19 m ² /Vs	5	L3	CO4

Prepared by: Ms. Thejaswini L P

HOD:Dr. Mahesh K K