ivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 <BS> <03/04/2021>

CONTINUOUS INTERNAL EVALUATION - 3

Dept: FY	Sem/Div:I/A,B,C	Sub: Engineering Physics	S Code:18PHY12
07/04/2021	Time: 3-4:30pm	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

Q1	N	Questions	Marks	RBT	CO's		
PART A							
1	a	State and explain Hooke's Law. Explain the nature of elasticity with the help of stress-strain diagram	10	L2	CO1		
		Derive the relation between bulk modulus (K), Young's modulus (Y) and σ.	10	L2	CO1		
		Calculate the force required to produce an extension of 1mm in steel wire of length 2m and diameter 1mm. (Y=2x10 ¹¹ N/m ²)	5	L3	CO1		
		OR		1			
2		Define Young's modules of materials. Derive an expression for the Young's modulus of a beam using single cantilever method	10	L1 &I 2	CO		
Name of the last	ь	What are the types of Elastic moduli? Mention various types of beams and their engineering applications	10	L1 &1 2	CO		
		Calculate the torque required to twist a wire of lengt 1.5m, radius 0.0425×10^{-2} m through an angle of $(\pi/4.5)$ radians, if the value of rigidity modulus of the material is 8.3×10^{10} N/m ² .	5)	L	3 CC		

Page: 1 / 2

		PART B	1	ana	the d			
3	a	Give the assumptions of quantum free electron theory. Discuss two success of quantum free electron theory	10	7 2	Affillio MO8			
		Define internal field in case of solid dielectrics. Derive Clausius-Mossotti equation	10	L1 &I 2				
	c	The intrinsic charge carrier concentration of germanium is $2.4 \times 10^{19} / \text{m}^3$, calculate its resistivity if mobility of electrons and holes respectively are $0.39 \text{m}^2 / \text{Vs}$ and $0.19 \text{m}^2 / \text{Vs}$.	5	L3	CO4			
		OR						
4	- 2	What is Hall Effect? Obtain the expression for Hall voltage in terms of Hall co-efficient.	10	L1 & L2	CO4			
	1	What is Fermi Energy? Derive an expression for Fermi Energy at zero Kelvin for a metal	10	L2	CO4			
		Calculate the probability of an electron occupying an energy level 0.02eV above the Fermi level at 200K and 400K in a material.	5	L3	CO4			

Prepared by: Ms. Thejaswini L P

HOD: Prof. Ramaranda Kamath