Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]								
CRM08 Rev 1.10 BS	23-08-2021							
CONTINUOUS INTERNAL EVALUATION- 3								
Dept: BSSem / Div: II/A, B, C, D, E, FSub: Advanced Calculus and Numerical methodsDate:23-09-2021Time: 9:30-11:00 amMax Marks: 50Note: Answer any 2 full questions, choosing one full question from each part	S Code:18MAT21 Elective: N art.							
Q Questions	Marks	RBT	COs					
PARTA 1 a Form the partial differential equation by eliminating the arbitrary constants from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	8	L1	CO3					
b Solve $\frac{\partial^2 z}{\partial x \partial y} = sinx siny$, for which $\frac{\partial z}{\partial y} = -2 siny$ when $x=0$ and $z=0$ when y is an odd multiple of $\frac{\pi}{2}$	8	L2	CO3					
c Solve one dimensional wave equation, using the method of separation of variables.	9	L3	CO3					
OR								
2 a Form the partial differential equation by eliminating the arbitrary function from $f(x^2+y^2, z-xy)=0$	8	L1	CO3					
b Solve $\frac{\partial^2 z}{\partial y^2} = z$, given that when $y=0, z=e^x$ and $z=e^{-x}$	8	L2	CO3					
c Solve one dimensional heat equation, using the method of separation of variables.	9	L3	CO3					
PART B		1	<u> </u>					
3 aApply Newtons backward difference formula to find y(3) given that x -4-2024	8 L2 CO5							
y -25 1 3 29 127								
b Use Newton-Raphson method to find the real root of the equation $x \sin x + \cos x = 0$ near $x = \pi$. Carry out iterations up to 4 decimal places of accuracy.	8	L3	CO5					
c Evaluate $\int_{4}^{5.2} log_e x dx$, taking 6 equal strips by applying Weddle's rule	9	L2	CO5					
OR		1	I					

Mayne.

Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]							
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi							
CRM08	Rev 1.10	BS	23-08-2021				

CONTINUOUS INTERNAL EVALUATION- 3

4	a Using Newtons divided difference formula evaluate f(8) given						en	8	L3	CO5	
		x	4	5	7	10	11	13			
		у	48	100	294	900	1210	2028			
	^b Find a real root of the equation $x \log_{10} x = 1.2$ by Regula Falsi method correct to four decimal places.						8	L3	CO5		
	c Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} dx$ using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule, taking 10 equal parts.						9	L2	CO5		