Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.9 <BS> <21/10/19>

CONTINUOUS INTERNAL EVALUATION - 1

Dept:BS		Sub:Calculus and Linear Algebra	S Code: 18MAT11
Date: 24/10/19	Time: 9:30-11:00	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

_								
Q	N	Questions	Marks	RBT	CO's			
	PART A							
1	a	Show that the angle between the curves $r = a \log \theta$ and $r = \frac{a}{\log \theta}$ is $2 \tan^{-1} e$	8	L1	C01			
	b	With usual notation, prove that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}^2 \right)$	8	L2	CO1			
	С	Find the radius of curvature for the curve $y^2 = \frac{a^2(a-x)}{x}$ at the point where the curve meets the x-axis.	9	L2	CO1			
OR								
2	a	Find the pedal equation of the curve $r^m = a^m (\cos m\theta + \sin m\theta)$	8	L2	CO1			
		Show that the tangent to the cardiod $r=a(1-\cos\theta)$ at the points $0=\frac{\pi}{3}$ and $\theta=\frac{2\pi}{3}$ are respectively parallel and perpendicular to the initial line.	8	L1	CO1			
	С	Find the coordinates of the centre of curvature at any point of the parabola $y^2 = 4ax$. Hence show that its evolute is $27ay^2 = 4(x-2a)^3$	9	L2	CO1			

Page: 1/3

		PART B			
3		Expand the function log(sec x+tan x) by using Maclaurin series upto terms containing 5 th degree.	8	L2	CO2
	b	Evaluate $\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{1/x^2}$	8	L2	CO2
		Find the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	9	L2	CO2
		OR			
4	1	If u=yz/x, v=zx/y, w=xy/z find the Jacobian of u,v,w w.r.t x,y,z.	8	L2	CO2
	b	If $u = f(\frac{y - x}{xy}, \frac{z - x}{xz})$ then prove that $x^{2} \frac{\partial u}{\partial x} + y^{2} \frac{\partial u}{\partial y} + z^{2} \frac{\partial u}{\partial z} = 0$	8	L2	CO2
	C	Examine the friction $f(y, y) = 2(y^2 - y^2) - y^4 + y^4$ for	9	1.2	COZ

MRPai 21/10/19 Prepared by: Madhavi R Pai

its exterme values.

HOD: Dr. Mahesh K