Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

BS

25-02-2021

CONTINUOUS INTERNAL EVALUATION - 2

Dept:BS	Sem / Div:1/A,B,C,D,E,F	Sub:Calculus and Linear Algebra	S Code:18MAT11
Date:04-03-21	Time: 9:30-11:00	Max Marks: 50	Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

Ql	N	Questions	Marks	RBT	CO's			
PART A								
1	a	Find the pedal equation of (i) $r^m cosm\theta = a^m$ (ii) $r = 2(1 + cos\theta)$	8	L2	CO1			
		Find the radius of curvature at the point $(\frac{3a}{2}, \frac{3a}{2})$ on the curve $x^3 + y^3 = 3axy$	8	L2	CO1			
	c	Show that the evolute of the parabola $y^2 = 4ax^*$ is $27ay^2 = 4(x-2a)^3$	9	L2	CO1			
OR								
2	a	With usual notations prove that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left[\frac{dr}{d\theta} \right]^2$	8	L2	CO1			
	b	Find the radius of curvature of $r^n = a^n \cos n \theta$	8	L2	CO1			
	c	Show that the pedal equation of the curve $r'' = a'' sinn\theta + b'' cosn\theta$ is $p^2(a^{2n} + b^{2n}) = r^{2n+2}$	9	L2	CO1			
PART B								

Page: 1/2

_								
3	a	Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$	8.	L2	CO3			
	b	Derive the relation between Gamma and Beta function	8	L2	CO3			
	С	Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double	9	L2	CO3			
		integration						
OR								
4	a	Change the order of integration and hence evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$	8	L2	CO3			
		Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy$ by changing into polar coordinates	8	L2	CO3			
	С	Show that $\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} d\theta * \int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta = \pi$	9	L2	CO3			

Prepared by: Ravishankar N K

HOD: M. Ramanagda Ramath