Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi									
CRM08	Rev 1.9	<bs></bs>	<05-12-2019>						
CONTINUOUS INTERNAL EVALUATION - 3									
Dept:BS	Sem /Div: 1/A,B,C,D,E&F	Sub:Calculus and Linear Algebra	S Code:18MAT11						
Date:16-12-2019	Time: 9:30-11:00	Max Marks: 50	Elective: N						

Note: Answer any 2 full questions, choosing one full question from each part.

Q	N	Questions	Marks	RBT	CO's					
	PART A									
1	a	If the temperature of the air is 30° C and a metal ball cools from 100° C to 70° C in 15 minutes, find how long will it take for the metal ball to reach a temperature of 40° C	8	L3	CO4					
	b	Find the orthogonal trajectories of $r^n cosn \theta = a^n$ where 'a' is the parameter	8	L3	CO4					
	c	Solve: $xy(\frac{dy}{dx})^2 - (x^2 + y^2)\frac{dy}{dx} + xy = 0$	9	L2	CO4					
OR										
2	a	Find the general and singular solution of $(px-y)(py+x)=2p$ by using the substitution $u=x^2$, $v=y^2$	8	L1	CO4					
	b	Show that the family of parabolas $y^2=4a(x+a)$ is self orthogonal	8	L3	CO4					
	c	Solve: p ² +2pycotx=y ²	9	L2	CO4					

Page: 1 /2

		PART B			
3	a	Solve the following system of equations by Gauss-Seidel Method 10x+y+z=12, x+10y+z=12, x+y+10z=12. Carry out 4 iterations	8	L2	CO
	b	Find the rank of $A = \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix}$	8	L1	CO
	c	Solve by Gauss-Jordan method $x+y+z=9$, $x-2y+3z=8$, $2x+y-z=3$	9	L2	CO:
		OR			
4	a Investigate the values of λ, μ such that $x+2y+3z=6, x+3y+5z=9, 2x+5y+\lambda z=\mu$ may have (i)no solution (ii)unique solution (iii)infinite solution		8	L2	CO:
	Ь	Find numerically largest eigen value and the corresponding eigen vector of the matrix $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by Power method . Take X ₀ =[1,0.8,-0.8] ^t perform 5 iterations	8	L2	CO
	c	Reduce the matrix $A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$ into the diagonal form	9	L2	COS
		Restistig	MI	2)19	<u></u>

Prepared by: Ravishankar N K

HOD: Dr.Mahesh K K