Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 BS 30-03-2021

CONTINUOUS INTERNAL EVALUATION - 3

Dept:BS	Sem / Div:1/A,B,C,D,E,F		S Code:18MAT11		
Date:07-04-21	Time: 9:30-11:00	Max Marks: 50	Elective:N		

Note: Answer any 2 full questions, choosing one full question from each part.

Q	N	Questions	Marks	RBT	CO's				
	PART A								
1	a	Solve: $ (x^2 + y^2 + x) dx + xy dy = 0 $	8	L2	CO4				
	b	Find the orthogonal trajectories of the family of $r^n = a^n \cos n\theta$	8	L3	CO4				
	c	Solve: $xyp^2 - (x^2 + y^2)p + xy = 0$	9	L2	CO4				
OR									
2		If the temperature of the air is 30°C and the metal ball cools from 100°C to 70°C in 15minutes find how long it takes for the metal ball to reach the temperature of 40°C		L3	CO4				
	b	Solve: $x^3 \frac{dy}{dx} - x^2 y = -y^4 \cos x$	8	L2	CO4				
		Find the general and singular solution of $(px-y)(py+x)=a^2p$ by reducing to Clairaut's form by using the substitution $X=x^2$, $Y=y^2$		L1	CO4				

PART B							
3	a	Find the rank of matrices (i) $A = \begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$	8	L1	CO5		
		(ii) $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$					
	b	So!ve by Gauss-Jordan method 2x+5y+7z=52, 2x+y-z=0, x+y+z=9	8	L2	CO5		
	С	Find numerically largest eigen value and the corresponding eigen vector of the matrix A by Power method. $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ Take $X_0 = [0,0,1]^t$	9	L2	CO5		
OR							
4	a	Solve the following system of equations by Gauss-Seidel Method 20x+y-2z=17, 3x+20y-z=-18, 2 x-3y+20z=25.	8	L2	CO5		
	b	Reduce the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ into the diagonal form	8	L2	CO5		
	С	Investigate the values of λ, μ such that $x+y+z=6, x+2y+3z=10, x+2y+\lambda z=\mu$ may have (i)no solution (ii)unique solution (iii)infinite solution	9	L2	CO5		

Prepared by: Nayana PM

HOD: M.Ramanda Kamath