Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.9

ME

11/06/2022

CONTINOUS INTERNAL EVALUATION - 2

Dept: ME	Sem / Div: 6 th	Sub: NCES	S Code: 18ME651
Date: 18/06/2022	Time: 9.30-11.00 AM	Max Marks: 50	Elective: OPEN

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's
	PART A			
1	a What do you mean by Ocean Thermal Energy conversion? Explain its principle of working.	5	L2	CO7
	b With the help of T-S diagram, explain Claude & Anderson Cycles used in converting OTEC.	12	L2	CO7
1	c Enlist the advantages, limitations of OTEC	68	L2	CO7
	OR			
2 8	What do you mean by Tidal Energy? Explain the process generation of Tides.	40 5	L2	CO7
1	b With a neat schematics explain Single Basin & Two Basin types of Tidal Plants.	12	L2	CO7
	c Enlist the advantages, limitations of Tidal Energy harnessing	499	L2	CO7
	PART B			
3	a Define Wind. With the basic principles derive the equation for Energy in the wind.	10	L2	CO4
	b If the wind speed is 20 m/s and the blade length is 50 m, calculate the power in the wind. Take $\int = 1.23 \text{kg/m}^3$	5.	L3	CO4
	c A wind turbine has a blade length 20 m and observed to work with maximum wind speed of 15m/s and minimum speed of 5 m/s, Determine the wind power	5	L3	CO4
		Page:	4 13	

Page: 1 / 2

T	1				
	1	Calculate the wind power for: turn radius 22m, number of blades-3, assuming suitable value of '\(\int \)' with highest & lowest wind velocity 18, 2 m/sec.	5	L3	CO4
4		With basic concepts-deduce the equation for Power in the Wind.	15	L2	CO4
		Explain with a neat schematic a wind Mill/Turbine.	5	L2	CO ₄
	O	Enlist the advantages, limitations of Wind Energy	85	L3	CO4
1		Enlist the advantages, limitations of which harnessing.			

Prepared by: Dr. DKB/Dr. BJM/Prof. SML