Vivekananda College of Engineering & Technology,Puttur							
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi							
CRM08	Rev 1.10	<fу></fу>	<20/09/21 >				

CONTINUOUS INTERNAL EVALUATION- 3

Dept: FY	Sem/Div: II/D,E,F	Sub: Engineering Physics	S Code:18PHY22				
23/09/2021	Time: 3- 4:30pm	Max Marks: 50	Elective: N				
Note: Answer any 2 full questions, choosing one full question from each part.							

	Q N	Questions	Marks	RBT	COs			
	PART A							
1	a	Give the assumptions of Quantum Free Electron Theory. Discuss two success of quantum free electron theory	10	L2	CO4			
	b	Define internal field. Mention the expression for internal field for one dimension, for three dimensional and Lorentz field for dielectrics. Derive Clausius-Mosotti equation	10	L1&L 2	CO4			
	c	Calculate the probability of an electron occupying an energy level 0.02eV above the Fermi level at 200K and 400K in a material	5	L3	CO4			
		OR						
2	2 a	What is Hall Effect? Obtain the expression for Hall coefficient, and express Hall voltage in terms of Hall coefficient.	10	L1&L 2	CO4			
	b	Define Fermi energy, Fermi factor and Fermi velocity. Explain the variation of Fermi factor with temperature	10	L1&L 2	CO4			
	c	The resistivity of intrinsic germanium at 27 ^o C is equal to 0.47 ohm-m. Assuming the electron and hole mobilities as 0.38 and 0.18m ² /V-sec respectively. Calculate the intrinsic carrier density	5	L3	CO4			
		PART B						
	3 a	State and explain Hooke's law. Explain the nature of elasticity with the help of stress-strain diagram	10	L2	CO1			
	b	What are torsional oscillations? Mention any two applications of torsional pendulum. Derive the expression for couple per unit twist of a solid cylinder.	10	L1&L 2	CO1			
	c	Calculate the torque required to twist a wire of length 1.5m, radius 0.0425×10^{-2} m through an angle of ($\pi/45$) radians, if the value of rigidity modulus of the material is 8.3×10^{10} N/m ² .	5	L3	CO1			
OR								
2	ła	Define bending moment. Derive the expression for bending moment in terms of moment of inertia.	10	L1& L2	CO1			
	b	What are the types of Elastic moduli? Derive the relation between Y, n and $_{\sigma}$ where the symbols have their usual meaning.	10	L2	CO1			
	c	Calculate the force required to produce an extension of 1mm in steel wire of length 2m and diameter 1mm (Young's modulus for steel $Y=2x10^{11}$ N/m ²	5	L3	CO1			

18-sumi

Alternally.

Prepared by: Ms. Thejaswini L P

_