| | | (| CS | 38 | Ch | | | |-----|--|---|----|----|----|--|--| | USN | | | | | | | | 18PHY12/22 # Engineering Physics First/Second Semester B.E. Degree Examination, Dec.2019/Jan.2020 Time: 3 hrs. Max. Marks: 100 Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Physical constants: velocity of light $C = 3 \times 10^8$ m/s; Planck's constant $h = 6.63 \times 10^{-34}$ J-S: Mass of an electron $m = 9.11 \times 10^{-31}$ kg Beltzmann constant $K = 1.38 \times 10^{-23}$ J/K; Avagadro number $N_A = 6.02 \times 10^{26}$ /K mole. # Module-1 - a. Give the theory of forced vibrations and obtain the expression for amplitude. (08 Marks) - With a neat diagram, explain the construction and working of Reddy tube. Mention four applications of shock waves. - c. Calculate the resonant frequency for a simple pendulum of length 1m. (04 Marks) ## OR - Define force constant and mention its physical significance. Derive the expression for force constant for springs in series and parallel combination. (08 Marks) - Define simple harmonic motion. Derive the differential equation of motion for it using Hook's law. Mention the characteristics and examples of simple harmonic motion. (08 Marks) - c. The distance between the two pressure sensors in a shock tube is 150mm. The time taken by a shock wave to travel this distance is 0.3ms. If the velocity of sound under the same condition is 340m/s. Find the Mach number of the shock wave. (04 Marks) ## Module-2 - Explain longitudinal stress, longitudinal strain, volume stress and volume strain. Discuss the effect of stress, temperature, annealing and impurities on clasticity. (08 Marks) - b. Derive the relation between bulk modulus(k), Young's modulus (Y) and Poisson's ratio (σ), what are the limiting values of Poisson's ratio? - c. Calculate the extension produced in a wire of length 2m and radius 0.013 × 10⁻²m due to a force of 14.7 Newton applied along its length. Given, Young's modulus of the material of the wire Y = 2.1 × 10¹¹N/m (04 Marks) # OR - Describe a single cantilever and derive the expression for Young's modulus of the material of rectangular beam. (08 Marks) - b. Derive an expression for couple per unit twist for a solid cylinder with a diagram. (08 Marks) - c. Calculate the angular twist of a wire of length 0.3m and radius 0.2×10^{-3} m when a torque of 5×10^{-4} Nm is applied. (Rigidity modulus of the martial is 8×10^{10} N/m²). (04 Marks) ## Module-3 - a. Explain Divergence and curl. Derive Gauss Divergence theorem. (08 Marks) - Define V-number and fractional index change. With a neat diagrams, explain different types of optical fibers. (08 Marks) - Find the divergence of the vector field \vec{A} given by $\vec{A} = 6x^2 \hat{a}_x + 3xy^2 \hat{a}_y + xyz^3 \hat{a}_z$ at a point P(1, 3, 6). (04 Marks) l of 2 Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. # 18PHY12/22 ### OR - a. Derive the expression for displacement current. Mention 4 Maxwell's equations in differential form for time varying fields. (08 Marks) - Derive an expression for numerical aperture in an optical fiber and stain the condition for propagation. (08 Marks) - Find the attenuation in an optical fiber of length 500m When a light signal of power 100mw emerges out of the fiber with a power 90mw. # Module-4 - State and explain Heisenberg's Uncertainty Principle. Show that the electron cannot exist inside the nucleus. (08 Marks) - Define spontaneous emission and stimulated emission. Explain the construction and working semiconductor Laser. (08 Marks) - c. A partied of mass 0.5mev/C² has kinetic energy 100eV. Find its de Broglie wavelength, where C is the velocity of light. (04 Marks) #### OF - 8 a. Assuming the time independent Schrödinger wave equation, discuss the solution for a particle in one dimensional potential well of infinite height. Hence obtain the normalized wave function. (08 Marks) - b. Derive the expression for energy density interms Eienstein's co-efficient. (08 Marks) - The ratio of population of two energy levels is 1.059 * 10⁻³⁰. Find the wavelength of light emitted by spontaneous emissions at 330K. # Module-5 - Give the assumptions of quantum free electron theory. Discuss two success of quantum free electron theory. (08 Marks) - b. What are polar and non-polar dielectrics? Explain types of polarization. (08 Marks) - Calculate the probability of an electron occupying an energy level 0.02ev above the Fermi level at 200K and 400K in a material. (04 Marks) # OR - Define internal field. Mention the expressions for internal field, for one dimension, for three dimensional, and Lorentz field for dialectics. Derive Clausius – Morsotti equation. (08 Marks) - b. Describe Fermi level in an intrinsic semi conductor and hence obtain the expression for Fermi energy in terms of energy gap of intrinsic semiconductor. (08 Marks) - c. An elemental solid dielectric material has polarizability 7 × 10⁻⁴⁰Fm². Assuming the internal field to be Lorentz field, calculate the dielectric constant for the material if the material has 3 × 10²⁸ atoms/m³. 2 of 2